Россия, Мурманск
Телефон:
+7 (815) 257-29-.. Показать номер
Пн-сб: 10:00—19:00; вс: 11:00—18:00
whatsapp telegram vk email

Лампы по-новому. Собираем ламповый приемник с современным управлением

Раньше, когда компьютеры были громоздкими, прототипы первых транзисторов еще не покинули стены исследовательских лабораторий Bell Labs, а про формат МР3 никто не слышал, аудиофилы находились в своем аналоговом раю, получая удовольствие от теплой ламповой музыкы из радиоприемников и виниловых проигрывателей. В этой статье я покажу, как собрать FM-радиоприемник на лампах.

Как и любые другие виды данных, звук сейчас хранится как правило в цифровом виде. Разумеется, качество звука на выходе очень зависит от характеристик конкретного устройства — используемого ЦАП (цифро-аналогового преобразователя) и ОУ (операционного усилителя). Но в целом от дискретности и квантования сигнала уже никуда не деться.

Здесь, конечно, можно вспомнить про кассеты, винил и проигрыватели — «вертушки». У них есть свои ценители, и даже сегодня достать экземпляры такой техники в хорошем состоянии не составляет большого труда. Но собрать нечто похожее «на коленке» уже не получится: тут нужна достаточно сложная механика. Что делать в такой ситуации?

Выход есть! Сигнал можно взять из радиоэфира. Тем более раньше это было совсем тривиально: открываешь книжку для радиолюбителей и собираешь себе ДВ/СВ-приемник 1V1 или 1V2 — схемы там очень простые. И уже через несколько часов можно слушать любимое радио «Маньяк».

Приемники прямого усиления классифицируются по количеству каскадов усиления до и после детектора. Таким образом, 1V1 означает, что приемник содержит один каскад УВЧ (усилитель высокой частоты), детектор и один каскад УНЧ (усилителя низкой частоты). Подробнее смотри на страницах Википедии.

Но это было раньше, а с 2014 года вещание в ДВ- и СВ-диапазоне на территории России было прекращено полностью (эфир зашумлен, да и нерентабельно). Впрочем, справедливости ради можно отметить, что высококачественного звука на длинных и средних волнах никогда и не было. Это объясняется узкой полосой вещания (около 10 кГц), а ее ширина напрямую связана с шириной диапазона передаваемого звукового сигнала. Таким образом, наши запросы удовлетворит только FM-диапазон.

Тут дела обстоят несколько сложнее, так как приемники прямого усиления уже неэффективны. Хотя, конечно, их тоже иногда собирают, но это скорее экзотика. Более-менее приемлемых результатов можно добиться, только собрав сверхрегенератор. У сверхрегенеративного приемника, пожалуй, лучшее соотношение простоты конструкции и эффективности. Буквально из десятка деталей можно собрать работающую схему. Однако качество звучания оставляет желать лучшего, и вот с этим практически ничего не поделать.

РЕКОМЕНДУЕМ: Перехват и анализ радиосигнала

Иными словами, чтобы добиться хороших результатов, мы вынуждены остановить свой выбор на супергетеродине. Современный FM-приемник можно реализовать на одной микросхеме RDA5807, содержащей в себе полный тракт супергетеродина с цифровым управлением. Она поддерживает стерео и RDS, но об этом как-нибудь в другой раз.

Наиболее прост в реализации супергетеродин с низкой промежуточной частотой и частотно-импульсным детектором. Такой приемник может содержать лишь одну перестраиваемую цепь, что очень упрощает конструкцию. Разберем принцип его работы подробнее.

Супергетеродин

Супергетеродинный приемник, в отличие от приемника прямого усиления, предполагает преобразование принимаемого сигнала в промежуточную частоту, на которой выполняется селекция. Такое решение позволяет сократить количество перестраиваемых элементов, что значительно облегчает задачу.

image Блок-схема типичного гетеродинного приемника

На схеме хорошо видно, что принимаемый сигнал усиливается и поступает в смеситель, туда же подается выход с гетеродина (вспомогательного генератора). В результате сигнал смесителя содержит биения, частота которых равна разности принимаемого сигнала и сигнала гетеродина. Из смесителя поток попадает в полосовой фильтр, который выделяет сигнал промежуточной частоты.

Именно в этом месте выполняется селекция. Далее промежуточная частота усиливается и поступает в детектор, выделяющий аудиосигнал. Последний преобразовывается УНЧ и подается на динамик или наушники. Схема в целом достаточно сложная, но зато она выигрывает с точки зрения стабильности работы.

Можно ли в этой схеме что-нибудь упростить? Да, можно! Если сделать промежуточную частоту достаточно низкой (~200 кГц), то полосовой фильтр можно заменить фильтром низких частот, что существенно упрощает конструкцию (собственно, так работает микросхема К174ХА34). А еще упростить схему можно? Конечно! Можно совместить смеситель с гетеродином, подобные приемники еще называют автодинами.

Подробнее прочитать про принцип работы супергетеродинного приемника можно в Википедии.

image
image
image
image
image
image
image
image
image

Простой FM приёмник на одном транзисторе своими руками

FM приёмник это довольно обыденная вещь сейчас, нет проблем купить такой хоть аналоговый, хоть цифровой но всё же хочется иногда собрать что-то своими руками и сделать свой самодельный приёмник, сегодня рассмотрим пожалуй самый простой FM приёмник всего на одном транзисторе но который может при всех своей простоте принять все станции ФМ диапазона, автор данного приёмника Захаров и опубликована ещё в 80-х годах в журнале Радио (1985 г. №12 с 28-30).

Оригинальная схема простого УКВ приёмника на одном транзисторе такая:

image Простой FM приёмник на одном транзисторе своими руками

Пришлось немного переделать схему, чтобы можно было принимать современный FM диапазон 88-108 МГц, так как изначально в оригинальной схеме был советский УКВ диапазон (65,8-73 МГц).

image Простой FM приёмник на одном транзисторе своими руками

Вместо транзистора ГТ311Е (КТ315) был поставлен импортный С9018. Данный транзистор в схеме выполняет целых 4 функции: это преобразователь частоты с совмещённым гетеродином, также выполняет функции синхронного детектора, а также он еще и предварительный усилитель звуковой частоты.

Катушка L1 диаметром 7 мм и состоит из 5 витков с отводом от средины, намотка осуществляется проводом ПЭВ-2 0,56 мм, катушка L2 также диаметром 7 мм и состоит из 11 витков. Катушки должны стоять к друг-другу перпендикулярно, то есть их края не должны смотреть в одну и ту же сторону, чтобы не было влияния друг на друга. В качестве переменного конденсатора я применил импортный у него с одной стороны 3 вывода, это 2 конденсатора с общим выводом и большей ёмкостью, а с другой стороны тоже 3 вывода, тоже 2 конденсатора но уже с меньшей ёмкостью, я применил с меньшей ёмкостью и только 1 конденсатор из двух, это средний вывод и один из крайних выводов. Так как приёмник работает на высокой частоте то все проводники и выводы компонентов должны быть как можно короче и компоненты должны находиться как можно ближе к друг-другу. Антенна – провод 90 см подключенный через конденсатор С1 на 10-18 пФ.

image Простой FM приёмник на одном транзисторе своими руками

Напряжение на выходе приёмника 10-30 мВ и этого достаточно для того, чтобы слушать станции на наушники включенные вместо резистора R2 (если смотреть по первой схеме). Вместо каскада усилителя НЧ я FM приёмник подключил к компьютерным колонкам где уже есть свой УНЧ.

image Простой FM приёмник на одном транзисторе своими руками

Данный ФМ радиоприёмник по чувствительности не уступает сверхрегенеративному, но в отличии от него не «шумит» в отсутствии сигнала. При настройке гетеродина на частоту, вдвое меньшую частоты радиостанции, происходит захват, сопровождаемый щелчком, после чего в некоторой полосе удержания приёмник следит за сигналом.

На данный самодельный простой FM приёмник на одном транзисторе я смог поймать 13 станций но надо учитывать, что для более чёткой настройки на станции понадобится верньер.

Забрать к себе:000

Похожие самоделки:

  • Чувствительный FM приёмник на одном транзисторе…
  • Простой транзисторный FM приёмник своими руками
  • Простой приёмник на цифровой логической микросхеме
  • Простой FM-УКВ конвертер для старого радиоприёмника…
  • Простейший FM жучок на одном транзисторе своими руками
  • Доработка радиоприёмника Retekess V115 и как выбрать…
  • Простой детектор скрытой проводки на одном транзисторе
  • FM радио на модуле RDA5708 и Ардуино
  • Простой АМ передатчик на таймере NE555 своими руками

Tags:приёмник, радиоприёмник, ФМ-радио

Частотно-импульсный детектор

Теперь остановимся подробнее на детекторе. Из его названия следует, что частотная модуляция подразумевает изменение частоты несущего сигнала под действием модулирующего сигнала. Продемонстрировать это можно следующим графиком.

Суть частотной модуляции

Для обратной процедуры, то есть выделения аудиосигнала, и используется ЧМ-детектор. Существует много видов частотных детекторов, но особняком среди них стоит так называемый счетный детектор.

Принцип работы счетного детектора достаточно прост для понимания. Частотно-модулированный сигнал пропускают через ограничитель, получая на выходе меандр переменной частоты. После этого по восходящему или нисходящему сигналу генерируют импульс постоянной ширины. Таким образом, из сигнала переменной частоты мы получили импульсы с изменяющимся периодом следования, а так как ширина импульсов постоянна, то коэффициент заполнения тоже меняется. То есть мы получили ШИМ-сигнал. Полученный ШИМ-сигнал интегрируют, что дает на выходе аудиосигнал.

В общем, частотно-импульсный детектор работает точно так же, как ЦАП, на ШИМ-генераторе. Однако у такого детектора есть некоторые ограничения, и это прежде всего частота входного сигнала, которая должна быть ниже 1 МГц (при условии, что отклонение частоты составляет 50 кГц, характерное для широкополосной FM-модуляции), так как на больших частотах начинает падать эффективность детектора. Впрочем, в нашем случае это, наоборот, преимущество.

Есть замечательное видео, где разбирается работа счетного детектора с осциллограммами.

Интересно отметить, что в отечественной радиолюбительской литературе данный детектор упоминается редко, а ламповых конструкций в рунете и вовсе не сыскать, тогда как в Европе и Австралии эти схемы достаточно популярны. Например, одним из самых известных приемников с частотно-импульсным детектором был Sinclair Micro FM. Да, это тот самый Синклер, который разработал ZX Spectrum.

Принципиальная схема

Итак, приступим к сборке такого девайса. В качестве исходной точки возьмем вот эту конструкцию.

image Схема приемника радиоприемника на лампах

Начнем с ламп. Очевидно, что в Австралии, где была разработана исходная схема, доступны немного другие лампы, поэтому адаптируем набор деталей под то, что есть у меня в наличии. Так, на входе стоит 6BL8, а это полный аналог нашей 6Ф1П, которая всегда применялась для УРЧ и конвертеров.

В анодных цепях радиоламп используется высокое напряжение, опасное для жизни и здоровья! Если у тебя нет достаточного опыта работы с высоковольтными схемами, категорически не рекомендуется повторять все описанное ниже на практике, по крайней мере без помощи опытного специалиста.

От ламп 6AU6, аналога 6Ж4П, я также отказался и сначала хотел собрать УПЧ на триодах, например 6Н1П или 6Н23П. Однако, поскольку усиление триодного каскада ниже, в усилителе на триодах нужно больше каскадов, а это может привести к самовозбуждению. Тем не менее некоторые радиолюбители успешно делали триодные УПЧ.

Остановив свой выбор на пентодах, я хотел применить пентод 6Ж1П, но у меня не нашлось необходимого количества соответствующих панелек, поэтому я решил использовать неведомо откуда взявшиеся у меня E83F (отечественных аналогов нет). Ограничитель собран на той же E83F. В детекторе использован отечественный аналог 6AL5 6Х2П — это детекторный двойной диод. В усилитель звуковой частоты вместо 6BM8 (наш аналог 6Ф3П) я использовал 6Ф5П, схему тоже немного изменил, взяв одну из описанных в интернете, благо ламповых УЗЧ существует великое множество. В итоге схема получилась такая.

image Адаптированная и переработанная схема радиоприемника на лампах

Рассмотрим появившиеся в моей схеме изменения и дополнения подробнее.

УВЧ и смеситель

Отличий здесь не так много: просто поставим в цепь накала два дросселя, «холодные» концы которых заземлим через блокировочные конденсаторы. Кроме того, добавим блокировочный конденсатор на анод пентодной части.

Эти изменения делают схему гораздо менее капризной. Кроме того, добавим АРУ (автоматическая регулировка усиления) во входной каскад. Впрочем, каких-то изменений от добавления АРУ я не заметил, но с АРУ лучше, чем без него. Управлять усилением можно, подавая отрицательное напряжение на сетку триода УВЧ.

УПЧ

Здесь изменения более существенные. Поскольку я использовал совершенно другую лампу, необходимо было пересчитать номиналы всех резисторов. Впрочем, если не выбирать режим лампы, а использовать рекомендованный, то рассчитать номиналы достаточно легко. Итак, рассмотрим типичный усилительный каскад на пентоде.

image Усилительный каскад на пентоде с общим катодом

Нам необходимо рассчитать значения Ra, Rk и Rg2, так как именно они определяют режим работы лампы, номиналы прочих элементов можно не трогать. В этих нехитрых расчетах нам поможет закон Ома: I = U/R. Из даташита на E83F мы видим, что рекомендованы следующие параметры:

  • напряжение анода 210 В;
  • ток анода 10 мА;
  • ток второй сетки 2 мА;
  • напряжение второй сетки 120 В;
  • резистор в цепи катода 165 Ом;
  • крутизна при указанных параметрах 10 мА/В.

Получается, что на катоде должно быть (Ia + Ig2) * Rk = 0,012 * 165 = 1,98 В, то есть около двух вольт. Под рукой были резисторы на 220 Ом, их я и поставил вместо рекомендованных 165 Ом. Теперь рассчитаем резистор в цепи второй сетки. Мы планируем питать УПЧ от напряжения примерно 220 В, то есть на резисторе должно быть падение напряжения U – Ug2 = 220 – 120 = 100 В при токе 2 мА. Таким образом, требуемое сопротивление Rg2 = (U – Ug2)/Ig2 = 100/0,002 = 50 000 = 50 К.

Рассчитаем сопротивление резистора в анодной цепи, зная, что коэффициент усиления пентодного каскада примерно равен Ra * S. Имеет смысл взять сопротивление побольше, однако опускать напряжение на аноде ниже 80 В не стоит, поэтому заложим анодное напряжение 120 В с запасом. Тогда Ra = (Uпит – Ua)/Ia = (220 – 120)/0,01 = 10 000 = 10 К. Под рукой оказались одноваттные резисторы на 8,2 К, их я и поставил. Здесь нужно использовать минимум одноваттные резисторы, так как на них будет рассеиваться 0,82 Вт. Теплый ламповый звук, однако!

Это, конечно, упрощенный способ расчета пентодного каскада, но он вполне рабочий. Таким же образом можно легко пересчитать номиналы под другой пентод. В УПЧ нет никаких строгих требований к характеристикам, а линейность и вовсе не важна, так что подойдет любой маломощный пентод.

Со схемами каскадов мы разобрались, теперь вернемся к общей схеме УПЧ. Строить трехкаскадный УПЧ для приемника, работающего в крупном мегаполисе, нет никакого смысла. Кроме того, добавление каждого нового каскада повышает риск самовозбуждения. Эксперименты показали, что двух каскадов вполне хватает и они выдают достаточный сигнал для работы ограничителя.

РЕКОМЕНДУЕМ: Как из видеоадаптера сделать SDR-передатчик

Примерный расчет показывает, что усиление двухкаскадного УПЧ будет 82 * 82 = 6724, а реальное усиление, как будет продемонстрировано далее, заметно ниже, но и этого вполне достаточно. Более того, для приема мощных станций достаточно и одного каскада. Так, при уверенном приеме на сетку второго каскада поступает сигнал до одного вольта!

image
image
image

Ограничитель и счетный детектор

Последний каскад УПЧ — ограничитель, от первых двух его отличает пониженное напряжение питания и малое напряжение смещения на управляющей сетке 1 В. Из-за такого режима и достаточно сильного сигнала, приходящего на вход (до нескольких вольт), каскад работает практически в ключевом режиме с сеточным током. Наличие последнего нам удобно как источник отрицательного напряжения, пропорционального величине сигнала, которое используется для индикатора настройки и АРУ.

То есть при наличии сеточного тока происходит отсечка положительных полуволн сигнала и с сетки можно снять отрицательное напряжение. А ключевой режим дает практически меандр на выходе с амплитудой примерно 70 В. Ограничитель, помимо прочего, позволяет подавить паразитную амплитудную модуляцию, что положительно сказывается на качестве звучания.

Затем следует формирователь импульсов. Он состоит из конденсатора и двух диодов. Через один диод конденсатор заряжается, а через второй идет разряд на резистор. Так как емкость конденсатора мала, то за время одного импульса конденсатор успевает полностью зарядиться (восходящий фронт), а затем полностью разрядиться (нисходящий фронт). За счет этого и достигается формирование импульсов примерно одинаковой длительности. Форма этих импульсов, конечно, далека от меандра и больше похожа на пилу, которую я завсегда смогу отличить от сойки, когда ветер южный, а погода — ясная.

Если усложнить схему, можно получить импульсы более приглядной формы, но профит от этого небольшой. Далее эти импульсы поступают на RS ФНЧ, похожий на тот, что был на выходе смесителя, только у этого фильтра частота среза ниже. И на его выходе мы имеем желанный аудиосигнал, а остаточные пульсации с частотой ПЧ отфильтруются полосой пропускания первого каскада УЗЧ. Во всяком случае, на осциллограммах сигнала на сетке оконечного каскада УЗЧ их не видно.

УЗЧ

Особо расписывать УЗЧ не вижу смысла, так как он выполнен по типичной схеме, которых в интернете великое множество. Схема совершенно обычная: предусилитель на триодной части 6Ф5П и оконечный каскад на пентодной части ее же. Почему именно 6Ф5П? Потому что у меня был трансформатор ТВЗ-1-9, который рассчитан на работу с лампами 6П14П и 6Ф5П. В сущности, усилитель может быть любой, детектор на выходе дает сигнал до нескольких вольт, а этого вполне достаточно, чтобы раскачать УЗЧ. Ориентировочная мощность моего усилителя составляет 3 Вт, этого хватает для наглядной демонстрации работы приемника.

Схема

Блок‑схе­му супер­гетеро­дина мы уже обсу­дили ранее вдоль и поперек и даже выяс­нили, по­чему он «супер». Здесь все будет при­мер­но так же: УВЧ, сме­ситель, УПЧ, детек­тор, УНЧ. Ниже пред­став­лена схе­ма УКВ‑бло­ка и УПЧ.

УКВ‑блок и УПЧ

УКВ-блок

Ис­торичес­ки сло­жилось, что в лам­повых при­емни­ках УВЧ‑сме­ситель и гетеро­дин выпол­нялся отдель­ным бло­ком. Это свя­зано с тем, что УКВ‑часть при­емни­ка нуж­далась в тща­тель­ном экра­ниро­вании и тре­бова­ла более качес­твен­ного мон­тажа, поэто­му про­мыш­леннос­ти так было удоб­нее.

Кро­ме того, там при­менял­ся ряд спе­цифи­чес­ких схе­мотех­ничес­ких решений, нап­равлен­ных на подав­ление паразит­ного излу­чения в антенну. В нашем слу­чае все про­ще, пос­коль­ку мы исполь­зуем в качес­тве гетеро­дина син­тезатор.

УПЧ и пре­обра­зова­тель соб­раны на лам­пе 6Н3П, про­мыш­ленные УКВ‑бло­ки обыч­но на ней и собира­лись. При­мене­ние три­одов обус­ловле­но их низ­ким уров­нем шумов, вмес­то лам­пы 6Н3П мож­но при­менить 6Н23П или, на худой конец, дру­гой двой­ной три­од. В сети есть при­меры исполь­зования 6Н1П и даже 6Н2П.

Вы­ход син­тезато­ра 50-омный, поэто­му его сиг­нал удоб­но подавать в катод­ную цепь. Для это­го катод­ное соп­ротив­ление автосме­щения раз­бива­ется на две час­ти — 47 Ом для под­клю­чения син­тезато­ра и 1 кОм для обес­печения необ­ходимо­го сме­щения.

Вер­хняя часть делите­ля шун­тиру­ется кон­денса­тором. Перес­трой­ка кон­тура ПЧ выпол­няет­ся варика­пом BB910. Катуш­ка кон­тура бес­каркас­ная, намота­на про­водом диамет­ром 1,5 мм на оправке диамет­ром 12 мм и содер­жит четыре вит­ка. Выход­ной кон­тур ПЧ слу­жит для выделе­ния час­тоты ПЧ и сог­ласова­ния соп­ротив­ления с керами­чес­ким филь­тром. Кон­турная катуш­ка содер­жит двад­цать вит­ков про­вода диамет­ром 0,2 мм, катуш­ка свя­зи мота­ется поверх кон­турной и содер­жит десять вит­ков того же про­вода.

В пре­обра­зова­теле для при­ема необ­ходимо­го сиг­нала теоре­тичес­ки мож­но исполь­зовать две час­тоты гетеро­дина, выше сиг­нала на величи­ну ПЧ и ниже на час­тоту ПЧ. В дан­ном слу­чае инъ­екция сни­зу работа­ет гораз­до эффектив­нее, поэто­му ее и будем исполь­зовать. При при­еме мощ­ной стан­ции на выходе пре­обра­зова­теля получа­ется сиг­нал в нес­коль­ко мил­ливольт.

Мон­таж высоко­час­тотной час­ти выг­лядит сле­дующим обра­зом.

Мон­таж высоко­час­тотной час­ти

УПЧ

УПЧ — это глав­ный блок при­емни­ка. Боль­шая часть харак­терис­тик опре­деля­ется имен­но УПЧ. И в слу­чае ЧМ‑при­емни­ка к УПЧ предъ­явля­ются про­тиво­речи­вые тре­бова­ния. С одной сто­роны, нуж­на полоса про­пус­кания поряд­ка 300 кГц, а с дру­гой сто­роны, нуж­ны дос­таточ­но кру­тые ска­ты АЧХ.

Клас­сичес­ки эту проб­лему решали схе­мами с рас­пре­делен­ной селек­цией, где в каж­дом кас­каде сто­ял полосо­вой филь­тр, сос­тоящий из двух сла­бос­вязан­ных кон­туров, и это луч­ший вари­ант. Одна­ко ока­залось, что соз­дать такой филь­тр, исполь­зуя име­ющиеся у меня кар­касы, дос­таточ­но слож­но. И глав­ная проб­лема здесь — регули­ров­ка свя­зи меж­ду кон­турами, которая очень силь­но вли­яет на АЧХ. Собс­твен­но, из‑за проб­лемы с плав­ной регули­ров­кой свя­зи я и отка­зал­ся от это­го решения в поль­зу схе­мы с сос­редото­чен­ной селек­цией, что счи­тает­ся более сов­ремен­ным решени­ем. Говоря кон­крет­нее, мы пос­тавим на вход УПЧ керами­чес­кий филь­тр на 10,7 МГц. Этим мы решим проб­лему кру­тиз­ны ска­тов АЧХ и с ходу получим тре­буемую изби­ратель­ность по сосед­нему каналу.

К нес­частью, у керами­чес­кого филь­тра низ­кое вход­ное соп­ротив­ление, поэто­му его необ­ходимо сог­ласовать с выход­ным соп­ротив­лени­ем пре­обра­зова­теля час­тоты. Для это­го мы исполь­зуем индуктив­ную связь с выход­ным кон­туром пре­обра­зова­теля. С сог­ласова­нием выход­ного соп­ротив­ления проб­лем нет. Конеч­но, у керами­чес­кого филь­тра неидеаль­ная АЧХ и дос­таточ­но боль­шое затуха­ние сиг­нала, но это неболь­шая пла­та за прос­тоту.

Схе­ма с оди­ноч­ными кон­турами — не самое хорошее решение, но она впол­не работос­пособ­на. Еще одна проб­лема свя­зана со склон­ностью уси­лите­ля к самовоз­бужде­нию, осо­бен­но это каса­ется УПЧ, пред­став­ленно­го выше. Из‑за этой неп­рият­ной осо­бен­ности, даже ког­да самовоз­бужде­ние не наб­людалось, АЧХ уси­лите­ля менялась в зависи­мос­ти от прог­рева и силы вход­ного сиг­нала (рос­ло уси­ление, но заужа­лась полоса). И это все отра­жалось на зву­чании.

Ле­чилось это тща­тель­ной нас­трой­кой в прог­ретом сос­тоянии. Поэто­му от схе­мы с емкос­тной связью я отка­зал­ся, и финаль­ная модифи­кация содер­жит УПЧ с индуктив­ной связью. В нем получа­ется нес­коль­ко ниже уси­ление, зато он гораз­до ста­биль­нее в работе.

Схе­ма УПЧ с индуктив­ной связью

Собс­твен­но, фун­дамен­таль­ная проб­лема с пос­трой­кой лам­пового УПЧ по схе­ме с сос­редото­чен­ной селек­цией зак­люча­ется в том, что на час­тотах выше пары мегагерц нерезо­нан­сные (апе­риоди­чес­кие) лам­повые уси­лите­ли не работа­ют. И имен­но поэто­му такая проб­лема у нас не воз­никала при пос­трой­ке при­емни­ка с низ­кой ПЧ. Там мы, не мудрствуя лукаво, исполь­зовали апе­риоди­чес­кие кас­кады.

Здесь такой номер не про­катит, поэто­му от кон­туров уйти не получит­ся. Про­ще все­го собирать резонан­сный УПЧ на пен­тодах, это поз­волит нам не стол­кнуть­ся с осо­бен­ностя­ми три­одов на высоких час­тотах. Упро­щен­ная фор­мула рас­чета коэф­фици­ента уси­ления резонан­сно­го кас­када на пен­тоде выг­лядит как

K = SrQ

где S — кру­тиз­на лам­пы (МA/В), r — харак­терис­тичес­кое соп­ротив­ление кон­тура, Q — доб­ротность кон­тура.

Ре­аль­но изме­ряемый коэф­фици­ент уси­ления выходит замет­но ниже, чем пред­ска­зыва­ет это выраже­ние. Но для наших при­кидок огра­ничим­ся лишь этой фор­мулой, из которой оче­вид­но, что лам­пу луч­ше взять с кру­тиз­ной поболь­ше и харак­терис­тичес­кое соп­ротив­ление поболь­ше. А вот с доб­ротностью слож­нее, так как с рос­том доб­ротнос­ти пада­ет полоса про­пус­кания, поэто­му боль­шая доб­ротность нам будет толь­ко мешать. Впро­чем, ее мож­но сни­зить, зашун­тировав кон­тур резис­тором, или исполь­зовать вза­имно расс­тро­енные кон­туры.

В ито­ге пос­ле ряда экспе­римен­тов я при­шел к катуш­ке ПЧ‑кон­тура, содер­жащей 45 вит­ков про­вода 0,12 мм и к емкости кон­турно­го кон­денса­тора 10 пФ. Харак­терис­тичес­кое соп­ротив­ление такого кон­тура око­ло 700 Ом, а при шун­тирова­нии его резис­тором в 15 К доб­ротность получа­ется око­ло 10. С таким кон­туром от одно­го кас­када на лам­пе 6AU6 (6Ж4П) мож­но получить уси­ление око­ло 20 и полосу про­пус­кания око­ло 1 МГц.

Это для УПЧ с емкос­тной связью. В УПЧ с индуктив­ной связью катуш­ка мота­ется в два про­вода и ее индуктив­ность ока­зыва­ется мень­ше при том же количес­тве вит­ков (тут мы упи­раем­ся в раз­меры кар­каса). Поэто­му кон­турные кон­денса­торы уже тре­буют­ся на 33 Р, а харак­терис­тичес­кое соп­ротив­ление око­ло 400 Ом. Уси­ление такого кас­када получа­ется око­ло 12.

В УПЧ при­мене­ны япон­ские лам­пы 6AU6 от NEC, но их сме­ло мож­но заменить на наши 6Ж4П. Похожих резуль­татов мож­но дос­тичь с лам­пами 6Ж1П, 6Ж1Б, 6К4П, 6Ж5П, чуть хуже с 6Ж2П, но надо подоб­рать номина­лы деталей, что­бы выс­тавить пас­пор­тный режим.

Ес­ли взять лам­пу пок­руче, типа 6Ж52П, мож­но дог­нать уси­ление кас­када до сот­ни, но она попалась мне под руку слиш­ком поз­дно, да и ест она элек­три­чес­тва, как три 6AU6. Замора­чивать­ся с АРУ я тоже не стал, осо­бен­но учи­тывая скром­ный коэф­фици­ент уси­ления УПЧ, а вот огра­ничи­тель при­дет­ся очень даже к мес­ту.

Ограничитель и дробный детектор

Дроб­ный детек­тор — шту­ка дос­таточ­но хит­рая, и прос­то объ­яснить на паль­цах его работу не вый­дет. Но этот самый прин­цип осно­ван на изме­нении фазы колеба­ний в двух свя­зан­ных кон­турах. Так, при нас­трой­ке в резонанс во вто­ром кон­туре фаза сме­щена на 90°, а при расс­трой­ке сдвиг фазы изме­няет­ся в боль­шую или мень­шую сто­рону в зависи­мос­ти от час­тоты.

Та­ким обра­зом, скла­дывая исходный (син­фазный) сиг­нал с сиг­налом, сдви­нутым по фазе на угол, про­пор­циональ­ный изме­нению час­тоты исходно­го сиг­нала, мы перехо­дим от час­тотной модуля­ции к ампли­туд­ной. А осталь­ная часть схе­мы — уже воп­рос кон­крет­ной реали­зации. Под­робнее об этом мож­но почитать тут или тут.

На этом прин­ципе работа­ют час­тотный дис­кри­мина­тор и дроб­ный детек­тор. Дроб­ный детек­тор име­ет некото­рое пре­иму­щес­тво, так как он менее чувс­тви­телен к паразит­ной ампли­туд­ной модуля­ции. Имен­но его я и при­менил в при­емни­ке. На рисун­ке ниже пред­став­лена схе­ма огра­ничи­теля и дроб­ного детек­тора.

Дроб­ный детек­тор и огра­ничи­тель

Во­обще говоря, огра­ничи­тель для дроб­ного детек­тора необя­зате­лен, но с ним получа­ется луч­ше. Конс­трук­тивно детек­тор выпол­нен в виде отдель­ного бло­ка и целиком помещен в экран, в котором име­ются отвер­стия для подс­трой­ки кон­туров. Боль­шинс­тво деталей — в SMD-исполне­нии, что помог­ло умень­шить габари­ты.

Де­тек­тор поч­ти в сбо­ре

Пла­та детек­тора

Эк­ран

Ка­туш­ки выпол­нены на упо­минав­шихся ранее сер­дечни­ках L4 и содер­жат 20 вит­ков эма­лиро­ван­ного про­вода 0,2 мм. Катуш­ка L5 мота­ется поверх L4 и содер­жит пять вит­ков того же про­вода. Катуш­ка L6 мота­ется на отдель­ном кар­касе двой­ным про­водом и содер­жит 12 + 12 вит­ков. Сами кар­касы раз­мещены друг от дру­га на рас­сто­янии 10 мм.

Ди­оды 1N34 мож­но заменить на более аутен­тичные Д2 или Д9. Как ни стран­но, нес­мотря на мои ожи­дания, с дроб­ным детек­тором не воз­никло никаких проб­лем в нас­трой­ке, глав­ное — попасть в нуж­ный час­тотный диапа­зон, что реша­ется под­бором кон­денса­торов С6 и C7.

Что же каса­ется огра­ничи­теля, то он — от обыч­ного уси­литель­ного кас­када понижен­ным нап­ряжени­ем на уско­ряющем элек­тро­де и низ­ким анод­ным током, что огра­ничи­вает ампли­туду в анод­ном кон­туре. Кро­ме того, кас­кад работа­ет без сме­щения и нес­коль­ко огра­ничи­вает ампли­туду вход­ного сиг­нала за счет сеточ­ного тока.

УЗЧ и блок питания

Уси­литель зву­ковой час­тоты выпол­нен по совер­шенно типовой одно­так­тной схе­ме на лам­пе 6Ф5П и пол­ностью пов­торя­ет УЗЧ ранее упо­мяну­того при­емни­ка с низ­кой ПЧ. Боль­ше тут, пожалуй, и обсуждать нечего, на тему лам­повых одно­так­тных уси­лите­лей в сети информа­ции даже боль­ше, чем нуж­но. Единс­твен­ное, о чем сто­ит упо­мянуть, — это зазем­ление накаль­ной цепи через резис­торы: такое решение поз­воля­ет подавить фон в 50 Гц.

УЗЧ и БП

Блок питания выпол­нен на тран­сфор­маторе ТАН-3, схе­ма совер­шенно типовая.

Конструкция приемника

Конструктивно приемник выполнен навесным монтажом внутри сборной алюминиевой коробки размером 50 х 120 х 240 мм. Крышка изготовлена из алюминия толщиной 2,5 мм, стенки и дно — из алюминия толщиной 1 мм. Дном можно пренебречь, но это несколько ухудшит стабильность работы приемника. На крышке расположены восемь панелек для ламп (одна из них осталась незадействованной), также на ней закреплен трансформатор УЗЧ и переменный конденсатор.

Если ты когда-нибудь хотя бы задумывался о покупке Hi-End лампового усилителя высокого ценового сегмента, фотографии ниже могут причинить тебе моральную травму.

FM-радиоприемник на лампах. Вид сверху Шасси соединено с общим проводом, внутри размещены шины из медной проволоки диаметром 2 мм, соединенные с шасси и играющие роль общего провода. Монтаж навесной. Конечно, туда стоило добавить несколько стоек с лепестками контактов, но я поленился.

Монтаж высокочастотной части, а именно УРЧ и смесителя, должен быть по возможности более жестким и выполненным проводниками минимальной длины, в противном случае работа устройства будет нестабильна, что выражается в дрейфе частоты. Идеальный вариант — поместить ВЧ-часть в отдельный экран.

FM-радиоприемник на лампах. Вид снизу. На передней стенке закреплены резисторы регулировки громкости и режима работы смесителя, туда же выведена ручка переменного конденсатора.

FM-радиоприемник на лампах. Вид спереди.

На задней стенке закреплены разъемы блока питания, динамика и антенны.

FM-радиоприемник на лампах. Вид сзади.

Блок питания выполнен в отдельном корпусе, но такое исполнение не принципиально. Правильнее было бы немного увеличить размеры девайса и смонтировать блок питания в одном корпусе с ним (трансформатора на 100 Вт хватит с избытком). Впрочем, это можно рассматривать как фичу: в двадцатых годах прошлого века блоки питания тоже часто делали отдельными.

Блок питания радиоприемника

Дроссели, примененные в приемнике, самодельные. Дроссели в цепи накала наматываются на резисторы 0,25 Вт сопротивлением больше 100 К и включают 150 витков эмалированного провода диаметром 0,12 мм. Высокочастотные дроссели представляют собой 75 см (четверть длинны волны на 100 МГц) эмалированного провода диаметром 0,7 мм, намотанного на бумажный каркас диаметром 5 мм. Контурная катушка содержит четыре витка эмалированного провода диаметром 2 мм.

АМ-РАДИОПРИЕМНЫЕ УСТРОЙСТВА НА МИКРОСХЕМАХ

АМ-радиоприемные устройства предназначены для приема модулированных по амплитуде сигналов частотой, как правило, не превышающей 30 МГц.

Ранее приемники амплитудномодулированных колебаний были широко распространены, поскольку при максимальной простоте изделия позволяли принимать информацию в диапазонах длинных, средних и коротких радиоволн. В последующие годы в связи с освоением высокочастотных диапазонов и иных принципов связи, обеспечивающих высококачественную трансляцию аудиосигналов, такие устройства вышли из употребления и в основном представляют интерес в плане изучения теории и практики радиосвязи.

Простой приемник амплитудномодулированных колебаний может быть выполнен всего на одной микросхеме. Схема приводится на рис. 41.1 [41.1].

Микросхема МК484 (Rapid Electronics Ltd) содержит встроенный входной эмиттерный повторитель, обеспечивающий входное сопротивление до 4 МОм, усилитель высокой частоты, детектор и систему автоматического регулирования усиления (всего 10 транзисторов).

Для работы в средневолновом диапазоне катушка L1 должна иметь индуктивность 470 мкГн. Для этого ее наматывают на ферритовом стержне диаметром 10 мм с магнитной проницаемостью 600—1000. Обмотка содержит примерно 80 витков эмалированного провода диаметром 0,2 мм, длина намотки — 50 мм.

Входные цепи радиоприемника могут содержать резонансные элементы настройки на частоту принимаемой радиостанции, рис. 41.1, либо принимать неселективно все сигналы, поступающие на вход устройства в диапазоне частот 0,15—3 МГц, рис. 41.2. Микросхема может работать также в составе супергетеродинных радиоприемников. При напряжении питания 1,1—1,8 В она потребляет ток до 0,3 мА. Коэффициент усиления — 70 дБ при коэффициенте нелинейных искажений до 4 %. Выходное напряжение звуковой частоты — 5—30 мВ.

Полноценным аналогом микросхемы МК484 является микросхема ВТ7084, включаемая по идентично-типовой схеме [41.2} а также Ζ484, SY484, ТА7642, UTC7642, D7642 [41.3].

Максимально упрощенный вариант радиоприемника на микросхеме МК484 с питанием от одного пальчикового элемента, показан на

Рис. 41.3. Упрощенный вариант схемы АМ-радиоприемнйка на микросхеме МК484

Рис. 41.1. Схема AM-радиоприемника на микросхеме МК484

Рис. 41.2. Вариант схемы АМ-радиоприемника

рис. 41.3 [41.3, 41.4]. Нагрузкой радиоприемника служат головные телефоны с сопротивлением 32—500 Ом. При использовании высокоомных телефонов резистор R2 можно исключить из схемы, либо заменить потенциометром, превратив его в регулятор громкости. Телефон, точнее, разъем, его подключающий, одновременно служит выключателем устройства. Приемник потребляет от источника питания напряжением 1,25—1,5 В ток до 300 мкА.

Еще один AM-радиоприемник, выполненный на двух микросхемах DAI МК484 и DA2 TDA2822M в типовом включении, показан на рис. 41.4 [41.3,41.4]. Для работы в средневолновом диапазоне катушка L1 выполнена на ферритовом стержне Ф2000НН диаметром 8 мм и длиной 50 мм. Обмотка имеет 90 витков провода ПЭЛ или ПЭЛШО диаметром 0,1 мм.

Для длинноволнового диапазона число витков увеличивают втрое.

Приемник работает от источника питания напряжением 3—9 В. Для стабилизации рабочей точки микросхемы DA1 использован простейший

Рис. 41.4. Схема АМ-радиоприемника на двух микросхемах

стабилизатор напряжения на диодах VD1—VD3. В качестве громкоговорителя можно применять динамическую головку мощностью от 0,1 Вт и выше, имеющую сопротивление 6 Ом или более, например, 1ГД-9,

2ГД-40.

Несколько модернизировав предшествующую схему, рис. 41.4, можно собрать аналог трехпрограммного радиотрансляционного громкоговорителя — АМ-радиоприемника с фиксированными частотами приема 120 и 78 кГц, рис. 41.5 [41.3, 41.4]. Фильтры для изготовления конструкции можно взять готовые, от старого трехпрограммного приемника.

Рис. 41.5. Схема трехпрограммного радиотрансляционного приемника

Отметим, что схему можно несколько упростить, изъяв из ее состава элементы SA2.2 и SA3.3, закоротив контактные группы.

Микросхема ВТ7084 — AM-приемник прямого усиления с автоматической регулировкой усиления на уровне 30 дБ. Схема представлена на рис. 41.6 [41.2]. Чувствительность радиоприемника составляет в среднем 0,5 мВ на частоте 1 МГц при глубине модуляции 30 % (модулирующая частота 1 кГц). Выходное напряжение составляет 3 мВ. Входное сопротивление — 3,0 МОм. Напряжение питания микросхемы — 1,5±20 %; потребляемый ток без входного сигнала— 0,2 мА (0,12— 0,32 мА).

Рис. 41.6. Схема АМ-радиоприемника на микросхеме ВТ7084

С использованием микросхем SA612A и LM386N (отечественный аналог КР1438УН2) может быть собран простой радиоприемник на любительский диапазон 160 му пригодный для приема однополосной модуляции, рис. 41.7 [41.5].

Устройство выполнено по классической схеме супергетеродинного приемника. В качестве узкополосного фильтра использован электромеханический фильтр Ζ1 на частоту 500 кГц. Приемник имеет чувствительность не ниже 3 мкВ при отношении сигнал/шум 12 дБ. УНЧ с системой АРУ на полевом транзисторе VT1 обеспечивает выходную мощность до 0,5 Вт (на согласованную нагрузку). Коэффициент его усиления около 46 дБ.

Катушки входного полосового фильтра L1 и L2 выполнены в броневых сердечниках СБ-9 и содержат по 30 витков провода ПЭВ 0,15 мм с отводами от 6-го и 15-го витков снизу. Катушка L3 на полистироловом каркасе диаметром 8 мм с подстроечным сердечником из карбонильного железа содержит 40 витков того же провода.

В первоисточнике [41.5] гетеродин приемника рассчитан на работу для приема верхней боковой полосы, хотя в диапазоне нижних частот КВ диапазона (160, 80, 40 м обычно работают на нижней боковой полосе). Поэтому гетеродин следует перестроить на диапазон генерируемых им частот 1300—1500 кГц.

Для приема телеграфных сигналов желательно предусмотреть переключение фильтра Ζ1 на более узкополосный.

Развитием темы использования микросхем SA612A в приемопередающей аппаратуре является схема основного блока трансивера на радиолюбительский диапазон 160 м. Схема представлена на рис. 41.8 [41.6].

Устройство представляет собой полноценный трансивер, использующий однополосную модуляцию. Для его практического использования достаточно подключить внешний УНЧ и УМ — усилитель мощности выходного сигнала.

Гетеродин блока работает в диапазоне частот 2300—2500 кГц. На выходе устройства формируется однополосный сигнал диапазона 1800— 2000 кГц (160 м). Для перехода с приема на передачу на реле К1 и К2 подают напряжение 12 В.

Рис. 41.7. Схема радиоприемника на диапазон 160 м

Рис. 41.8. Схема базового блока трансивера на диапазон 160 м

Катушки полосовых фильтров помещены в броневых сердечниках СБ-9. Катушки L2, L3, L6 и L7 содержат по 30 витков ПЭВ 0,2 с отводом от 10-го витка (кроме L3, у нее отвод от 15-го витка). Катушка гетеродина L4 намотана на пластмассовом каркасе диаметром 8 мм с подстроечным сердечником СЦР (от контура УПЧИ черно-белого лампового телевизора). Она содержит 40 витков ПЭВ 0,2. Катушки L1 и L5 — дроссели на СБ-9, имеют по 100 витков ПЭВ 0,09.

Назначение выводов микросхемы: 1,2 — вход УПЧ; 3 — общий; 4 — выход смесителя; 5 — вывод контура гетеродина; 6, 7 — вход тракта AM УВЧ·, 8 — выход демодулятора; 9 — вход УНЧ; 10 — блокировка УНЧ; 11 — общий; 12 — выход УНЧ; 13 — питание; 14 — вход демодулятора; 15 — выход УПЧ; 16 — блокировка АРУ (выход УПЧ).

Основные параметры: напряжение питания — 9 В±10 %; потребляемый ток — 16 мА; входное напряжение — не более 50 мкВ; выходное напряжение НЧ AM >30 мВ; УНЧ >1,55 В; коэффициент гармоник НЧ-сигнала — до 2 %; отношение сигнал/шум — свыше 20 дБ.

Двухдиапазонный AM-радиоприемник с входным каскадом на полевом транзисторе (рис. 41.10) работоспособен в диапазоне изменения питающего напряжения в пределах от 3 до 9 В [41.8].

Рис. 41.9. Структура микросхемы К174ХА10

Рис. 41.10. Схема AM радиоприемника на микросхеме К174ХА10

Трансформатор Т1 выполнен на ферритовом кольце 1500НМ с наружным диаметром 7 мм. Обмотки трансформатора содержит по 160 витков, они выполнены вдвое сложенным проводим ПЭВ-2 0,1 мм.

Магнитная антенна приемника — плоский стержень из феррита 400НН 4x16x60 мм, катушка индуктивности L1 содержит 250 витков провода ПЭВ-2 0,1—0,15 мм, L2 — 83 витка провода ПЭВ 0,21 мм.

Подбором номинала резистора R2 добиваются максимальной чувствительности устройства. При самовозбуждении между выводами 9 и 11 микросхемы DA1 следует подключить конденсатор емкостью 4700—10000 пФ.

AM-радиоприемник прямого усиления (рис. 41.11) [41.9] может быть выполнен на основе микросхемы К174ХА10 (TDA1083, A283D), главное назначение которой — построение супергетеродинных радиоприемников на базе одной микросхемы, включающей преобразователь частоты с гетеродином, усилитель промежуточной и низкой частоты, между которыми включен детектор.

К входу устройства может быть подключена магнитная антенна и блок конденсаторов переменной емкости от любого приемника средневолнового диапазона. Настройка приемника заключается в подборе номинала резистора R1 по минимуму искажений и отсутствию самовозбуждения.

Рис. 41.11. Схема AM радиоприемника прямого усиления на микросхеме К174ХА10

Радиоприемник прямого усиления на микросхеме К174ХА10 (рис. 41.12) имеет чувствительность, сопоставимую с чувствительностью супергетеродинного радиоприемника [41.10].

Высокая чувствительность и избирательность приемника обусловлена применением достаточно сложной системой входных контуров, синхронно перестраиваемых при помощи блока конденсаторов переменной емкости С1.1 и С1.2.

Рис. 41.12. Схема AM радиоприемника повышенной чувствительности на микросхеме К174ХА10

Катушки LI, L2 содержат по 65 витков провода ПЭВ-2 0,27 мм, намотанных внавал на бумажных гильзах диаметром 10 мм. Внутри гильз размещены отрезки ферритовых стержней 600НН диаметром 8 мм. Катушка связи L3 намотана поверх катушки L2 и содержит 2 витка того же провода. Катушка L4 — без каркаса, имеет внутренний диаметр 3 мм и содержит 6 витков провода ПЭВ-2 0,41 мм.

Микросхема К174ХА36 (структурная схема представлена на рис. 41.13, а схема включения — на рис. 41.14) предназначена для использования в АМ-радиоприемниках.

Рис. 41.13. Внутреннее строение микросхемы К174ХА36

Микросхема содержит смеситель, гетеродин, усилители радиочастоты, промежуточной и низких частот, детектор и систему АРУ [41.12]. Микросхему можно использовать в радиоприемниках с низким (3 В) напряже нием питания, приемопередатчиках, системах охранной сигнализации и радиоуправления.

Напряжение питания микросхемы — от 2 до 9 В (для К174ХА36А) и 2—3,3 В (для К174ХА36Б) при максимальном потребляемом токе

3— 20 мА. Чувствительность радиоприемника при соотношении сиг- нал/шум 20 дБ на частоте приема 1 МГц.не хуже 15 мкВ. Напряжение на выходе АМ-детектОра — до 0,3 В. Коэффициент усиления предусилителя НЧ — 3—7. Промежуточная частота определяется фильтром ПЧ (обычно 450—470 кГц). Ток индикатора точной настройки на светодиоде HL1 —

Рис. 41.14. Схема радиоприемника на микросхеме ΚΙ 74ХА36

4— 10 мА.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Tweet Нравится

  • Предыдущая запись: РЕКОМЕНДАЦИИ НАЧИНАЮЩИМ КОРРЕСПОНДЕНТАМ – СДЕЛАЙ САМ
  • Следующая запись: ЦИФРОВОЙ МУЛЬТИМЕТР
  • ПРЕДУСИЛИТЕЛЬ АУДИОСИГНАЛОВ C АРУ (2)
  • ОХРАННАЯ СИГНАЛИЗАЦИЯ ДЛЯ МОТОЦИКЛА (0)
  • ИНДИКАТОР НАПРЯЖЕНИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ НА МИКРОСХЕМЕ МАХ691А (0)
  • БУФЕРНЫЙ УСИЛИТЕЛЬ ДЛЯ ВЫСОКООМНОГО МИКРОФОНА (0)
  • ШИРОКОПОЛОСНОЕ БУФЕРНОЕ УСТРОЙСТВО ОБЩЕГО НАЗНАЧЕНИЯ (0)
  • ЗВУКОВОЕ УСТРОЙСТВО ДЛЯ МОТОЦИКЛА (0)
  • ЛИНЕЙНЫЙ УСИЛИТЕЛЬ МОЩНОСТЬЮ 1,2 KBT И ЧАСТОТОЙ 144 МГЦ (0)

Настройка

Приемник достаточно неприхотлив и при правильной сборке начинает работать сразу. Тем не менее есть ряд общих рекомендаций по его настройке.

  1. После включения проверяют наличие накала ламп. Если накала нет, то следует проверить исправность лампы или искать обрыв/замыкание в цепи накала. Нити подогревателей прогретой лампы должны светиться оранжевым.
  2. Следует проверить наличие анодных напряжений. Некоторые напряжения указаны на схеме.
  3. Проверь режим работы ламп, установив требуемые напряжения в катодной цепи. Если отклонения существенны (больше 50%), следует подобрать соответствующие резисторы.
  4. Проверь работу УНЧ: при прикосновении к движку резистора пальцем должен слышаться характерный шум в динамике. Проверить работу УПЧ без осциллографа сложнее, но, если напряжения установлены верно и ошибок при сборке нет, он будет работать.
  5. Проверь работу смесителя. Когда вращаешь ручку управления режимом работы смесителя в месте начала генерации, должен появляться шум в динамиках.
  6. Проверь работу УВЧ: при касании антенного входа отверткой в динамиках раздаются характерные щелчки.

Прикасаться к элементам схемы, находящейся под напряжением, категорически не рекомендуется, это может привести к поражению электрическим током! Это опасно для жизни и здоровья.

Если все работает, то ручкой регулировки режима смесителя получаем появление шума в динамиках, после чего переменным конденсатором настраиваемся на радиостанцию. Затем более точной подстройкой режима смесителя и частоты добиваемся наилучшего качества приема. В этом помогает индикатор настройки. Все! Можно наслаждаться теплым ламповым звуком. Качество звучания этого приемника оказалось достаточно хорошим, во всяком случае, с качеством звучания сверхрегенератора оно не сравнится.

Ну и напоследок самое интересное, то, ради чего все и затевалось, — осциллограммы сигнала в разных точках схемы. Осциллограмм работ смесителя у меня нет по причине того, что щупы осциллографа сильно влияют на режим его работы, поэтому начнем с УПЧ.

РЕКОМЕНДУЕМ: Прием и декодирование сигналов из космоса

Рассмотрим сигнал на входе и выходе первого каскада УПЧ. На осциллограмме входного (снизу) сигнала видно, что из смесителя, кроме сигнала ПЧ, проходит высокочастотный шум, и его амплитуда даже больше амплитуды нужного сигнала. Но это не страшно, так как он отфильтруется полосой пропускания каскада. И действительно, в осциллограмме выходного сигнала виден только сигнал ПЧ с амплитудой около 200 МВ. Обрати внимание, что у осциллограмм разный масштаб. Из этих осциллограмм можно увидеть, что реальный коэффициент усиления каскада составляет около 30 против расчетных 80.

Сигнал на входе и выходе первого каскада УПЧ

Уже в этом месте с помощью осциллографа можно увидеть настройку на станцию, что выглядит как повышение амплитуды сигнала и пульсирующее изменение его частоты (частотная модуляция).

Частотная модуляция сигнала ПЧ

Далее посмотрим на работу второго каскада УПЧ. Тут все просто и понятно, входной сигнал усиливается примерно в 30 раз, и на выходе мы получаем уже около 5 В.

Сигнал на входе и выходе второго каскада УПЧ

После второго каскада сигнал попадает в ограничитель, в котором он дополнительно усиливается и амплитуда ограничивается на уровне 70 В. Здесь хорошо видно подавление паразитной амплитудной модуляции и почти меандр на выходе.

Сигнал на входе и выходе ограничителя

Также тут можно посмотреть на частотную модуляцию.

Частотная модуляция в ограничителе

Теперь взглянем на осциллограммы работы счетного детектора. Видно, что на каждом восходящем фронте сигнала из ограничителя регенерируется импульс примерно одинаковой длительности и амплитуды.

Импульсы в счетном детекторе

Также здесь отчетливо видна частотная модуляция. Например, изменение частоты входного сигнала меняет частоту следования импульсов на выходе детектора.

Импульсы в счетном детекторе

Затем импульсы идут на интегрирующую RC-цепочку, что приводит к формированию низкочастотного сигнала на выходе. На осциллограмме отчетливо видно влияние частотной модуляции на выходной сигнал.

Формирование звукового сигнала

Суммарно работа детектора выглядит так, как показано на рисунках ниже. Здесь видно, что аудиосигнал несколько запаздывает относительно модулированной ПЧ, это связано с интегрирующей RC-цепочкой.

Работа ЧМ-детектора

C детектора сигнал идет на первый каскад УЗЧ, где он усиливается, а кроме того, отфильтровываются остаточные шумы из детектора.

Работа первого каскада УЗЧ

На этом можно и остановиться.

Ссылка на основную публикацию
Похожее