Россия, Мурманск
Телефон:
+7 (815) 257-29-.. Показать номер
Пн-сб: 10:00—19:00; вс: 11:00—18:00
whatsapp telegram vk email

Как сделать прикормочный кораблик для завоза прикормки и оснастки своими руками с минимальными затратами

Отчет о том, как я сделал своими руками карповый кораблик для завоза прикормки и оснастки практически БЕСПЛАТНО.

1. Увертюра 2. Корпус 3. Мотор. Муфта. Дейдвуд. Винт 4. Водомет и поворотный механизм 5. Электрическая схема 6. Программирование микроконтроллеров Ардуино 7. Крышка (палуба) катера и элементы управления на ней 8. Выгрузка прикормки 9. Итоги 10. Видео (14 частей)

Увертюра

Три года назад под влиянием друзей увлекся карповой ловлей. Ловить меня научили, рассказали все секреты. Пошли первые карпы. И вот, однажды на рыбалке, я завистливым глазом увидел рыбака с карповым корабликом. Кораблик этот мне очень понравился. Спросил сколько стоит – он мне очень разонравился (1000$ «на минуточку»). Погуглил – оказалось, можно взять за 100$, но не то. К тому же, в голове моей назревал план масштабной самоделки, чтоб себя позабавить и сына заинтересовать.

Принято первое решение: сделать кораблик для завоза прикормки своими руками. Пролистал форумы по RC моделированию, прикинул смету – почесал репу. Выходило по-бедному около 150$ на комплектующие. Да, и задача мне показалась слишком легкой (горе мне наивному).

Принято второе решение: сделать своими руками максимально бюджетный кораблик, а в идеале бесплатно. Честное слово, друзья, не от жадности, а из спортивного интереса.

Итак, выработалась концепция: Решил делать кораблик на DTMF управлении. Это, когда звонишь с одного мобильного телефона (передатчика) на другой (приемник), и при нажатии на клавиши раздается «пиканье» разного тона. На втором телефоне (приемнике) остается лишь запрограммировать преобразование этого «пиканья» в разные команды управления в зависимости от полученного тона (один сигнал мотор запускает, другой — останавливает, третий — поворачивает).

image
image
image
image
image

Корпус

Изначально я рассчитывал использовать корпус от старой игрушки. Сын (он, так сказать, был в доле) с легкостью презентовал старый пиратский фрегат на колесиках. Но при предварительном взвешивании предполагаемого оборудования (аккумулятор, мотор, электроника, и т.п.) оказалось, что фрегату не хватает грузоподъемности.

К сожалению, я не смог найти в магазинах подходящей по форме игрушки за адекватную цену. И решил делать корпус для своего рыболовного кораблика самостоятельно. Опять-таки, пролистав множество форумов и статей, решил, что материалом послужит стекловолокно и эпоксидная смола.

Изготовление корпуса для кораблика я начал с построения болванки, на которую потом планировал наносить материалы. Болванку делал так: из ДВП и картона сделал остов. Закрепил его просто горячим клеем к листу ДВП.

Потом отсеки остова начал заполнять гипсом (алебастр). Маленький лайфхак: добавьте в алебастр немного уксуса, и он будет медленнее застывать, но при этом идет интенсивное выделение газов, так что не забывайте проветривать помещение.

Когда болванка подсохла, я ее немного подправил и обклеил бумажным скетчем, чтоб потом было легче отделять ее от корпуса.

Стекловолокно, которое я использовал, еще называется стекломат. Продавец сказал, что для кривых форм лучше использовать его. Эпоксидка самая простая.

И снова минутка ТБ: Работать нужно в ХОРОШО проветриваемых помещениях. Не шучу. Это вам не в спичечном коробке мешать пару капель. Пару раз над корпусом рыболовного кораблика нагнулся во время нанесения слоя эпоксидки, и потом три дня отдышаться не мог и голова болела.

Нанес я таких 2-3-4 слоя. Раньше и я удивлялся самодельщикам: неужели нельзя посчитать два или три слоя ты нанес. Оказывается, во время работы иногда приходится класть слои внахлест, а иногда приходится накладывать латки. Поэтому лучше просто ориентироваться на толщину стенок корпуса. У моего рыболовного кораблика в среднем стенки корпуса имеют толщину около 3 мм. На данном этапе кораблик для завоза прикормки в точку ловли получил название «Макаронный монстр», т.к. волокна стекломата торчали во все стороны.

Далее самое муторное занятие — шпатлевка. Использовал вот такую универсальную шпатлевку со стекловолокном.

А также очень много грубой наждачной бумаги. Дальше процесс понятный: трешь, шпатлюешь, трешь, шпатлюешь. И так, пока не поймешь, что это лучшее, что ты способен сделать своими руками.

Когда я снял корпус с болванки, его вес составлял 1 кг 200 гр. Что довольно-таки хорошо для такой жесткости и такой грузоподъемности.

Красил, когда водомет уже был на месте (в следующем разделе описывается). Покраску проводил в три этапа: грунт и два слоя краски «Яхтная эмаль ПФ-167».

Спортивный РУ катер своими руками)

Строить решил из бальзы: внутренний каркас — 2мм., внешняя обшивка — 1мм. Корпус изнутри пропитан жидкой эпоксидной смолой, имеет большое количество ребер жесткости, скрытых под двойной палубой.

После полной сборки получился очень прочным, нигде не играет.

Ближе к оконцовке изготовления корпуса, были заказаны все комплектующие для него. Список был очень большим. по общей сумме комплектующие вместе с доставкой встали почти в 10 килорублей.

Из основного:

литий-полимерный аккумулятор Turnigy 5200mAh 2S 30C в жестком корпусе (вес: 336г) — www.parkflyer.ru/product/191560/ высокоскоростной цифровой сервопривод BMS-621DMG + HS (металлические шестерни) 7.2kg / 0,10 сек (вес: 46,5г) — www.parkflyer.ru/product/9439/ регулятор для лодок Birdie 100A с 5A BEC (вес: 114г) — www.parkflyer.ru/product/167451/ руль (большого размера) (вес: 110г) — www.parkflyer.ru/product/102678/ бесколлекторный Inrunner 2848SL 3900kv (с водяным охлождением) (вес: 153г) — www.parkflyer.ru/product/8594/ карбоновые стабилизаторы поворота (вес: 30г) — www.parkflyer.ru/product/102685/

регулируемый кронштейн дейдвудного вала (вес: 40г) — www.parkflyer.ru/product/102697/

вал с муфтой и гребной винт (комплект) (вес: 20г) — www.parkflyer.ru/product/104322/

6мм x 300мм латунная трубка (вес: 20г) — www.parkflyer.ru/product/102663/

регулируемые транцевые плиты (вес: 43г) — www.parkflyer.ru/product/104593/

В качестве радиоуправления была выбрана аппаратура Hobby King GT-2 2.4Ghz (2 канала). Ну и соответственно огромное количество необходимых разъемов, креплений, термоусадок, гребных винтов разных диаметров и шагов для подбора, тяг и всего прочего).

Зарядка с балансиром, переходники для зарядки были прикуплены еще заранее, так что это все было.

Итак, выкладываю фотки процесса постройки. Также закину видео самого первого заплыва)

Скажу сразу, радости и адреналина была масса, когда видишь как построенная своими руками модель вполне не плохо функционирует))).

Что касательно его веса и размеров:

вес всей использованной на данный момент начинки — 845г;

вес голого корпуса — 260г;

вес в полностью собраном виде — 1105г;

длина вместе с рудером — 830 мм;

ширина по транцу — 150 мм;

максимальная высота (вместе с кабиной) — 105 мм.

После подбора винтов остановился вот на этом:

гребной винт на вал 4мм (размер: 43мм х 26мм х 9мм) (вес: ) — www.parkflyer.ru/product/7356/

Видео смотреть с 1.09 минуты)

Мотор. Муфта. Дейдвуд. Винт

В этой главе расскажу о том, что является самым пугающим в судостроительстве для начинающих – о самодельном дейдвуде (гидроизолированный вал) и о том, что находиться по обе стороны от него: о винте и о моторе. Ну и как все это соединить своими руками, чтоб оно надежно и безотказно работало на прикормочном кораблике.

Самодельный дейдвуд для кораблика состоит из таких составляющих:

  • Корпус — представляет собой тонкостенную трубку от старого холодильника. Внешний диаметр 5мм, внутренний – 4,5мм. Края пришлось вручную раскатать, чтоб по обе стороны встали подшипники с внешним диаметром 6 мм.
  • Вал – это прут из нержавеющей стали диаметром 3 мм. С одной стороны нарезал резьбу М3 для крепления гребного винта.
  • Подшипники 3*6*2 мм. Подшипники заказывал у китайца. На фото были подшипники с пыльниками, а по прибытию оказалось, что вместо пыльника там лишь проволочка какая-то. Китаец деньги вернул, но я решил уже ставить те, что есть.
  • Сальники. Их роль исполняют изоляционные втулки TO-220 (радиодетали, если что).

На фото выше и на видео ниже видно, как собирается дейдвуд.

При работе, масло около подшипников может нагреваться и становиться более жидким, поэтому я решил добавить еще сальники из простых резиновых колечек 3/5 мм. Вставляются они прямо перед подшипником.

В качестве густой смазки я использовал ЛИТОЛ-24. Есть несколько нюансов в заполнении дейдвуда. Нужно забить корпус дейдвуда смазкой так, чтоб внутри была только смазка, а не половина смазки, половина воды. Для этого у шприца отрезается носик, чтоб получилась прямая трубка. Вынимается поршень. И такая трубка просто вставляется в бочонок (или что там у вас) со смазкой по самый край. Потом вставляется поршень в шприц, и только тогда мы вынимаем шприц полностью забитый смазкой без воздуха.

Что касается муфты, то считаю своим долгом сообщить, что муфту нужно брать заводскую. Проверил множество самодельных резиновых и металлических вариантов, но пока не купил нормальную муфту и не выставил мотор в отвес, были постоянные проблемы с надежностью и биением.

При выборе мотора я был ошарашен ценами, поэтому начал искать альтернативы. Нашел самый мощный из дешевых – это электродвигатель 540-4065.

Думаю, что можно было даже взять немножко слабее моторчик, но не утверждаю, так как не проверял пока свой прикормочный кораблик с более слабыми моторами. Возможно, когда-то дойдет до этого дело, с целью увеличить запас хода от одного заряда АКБ.

Гребной винт делал самостоятельно из латуни толщиной 1 мм. Вырезал три одинаковых лопасти в форме поросячьего уха. И припаял их к бронзовой стойке с резьбой М3. Получилось хорошо, но советую купить, или придется делать приспособу для пропорциональной спайки лопастей.

История создания

Для начала небольшая историческая справка о прототипе. История создания немецких торпедных катеров берет начало в годы Первой Мировой Войны. Впервые образец кораблей такого типа был построен в 1917г. Сразу можно сказать, что он был очень далек от совершенства. Но все же к концу войны флот Германия насчитывал 21 катер. После окончания войны многие страны потеряли интерес к этому типу оружия. По-другому обстояли дела в Германии, на которую было наложено множество ограничений по части вооружений, согласно Версальскому договору. Кстати, о торпедных катерах там ни чего не было сказано. Поэтому, немцы в 1923г. сначала приобрели несколько старых торпедных катеров для «Ганзейской школы яхтсменов» и «Германского спортивного общества открытого моря». Под прикрытием этих организаций начались работы по совершенствованию имеющихся катеров и созданию новых. К концу 30-х были выработаны требования тактико-технические требования к новым «москитам». Согласно немецкой морской доктрине, скоростные показатели, в отличие от проектов катеров других стран, были относительно невысокие — около 40 узлов. К тому времени разными фирмами были представлены три варианта катеров с разной компоновкой и различным количеством бензиновых двигателей. Но они не удовлетворили военных, поэтому, требовался совершенно новый проект. В 1928г. внимание специалистов привлекла моторная яхта Oheka II, построенная для американского финансового магната. Корпус, по тем временам, имел передовую конструкцию, его силовой набор был выполнен из легких сплавов, а обшивка состояла из двух слоев древесины. Три бензиновых двигателя позволяли яхте развивать скорость 34 узла. По тем временам это были выдающиеся характеристики. В ноябре 1929г. получила заказ на разработку и постройку торпедного катера. За основу конструкторы взяли проект яхты Oheka II, почти вдвое увеличили водоизмещение чтобы компенсировать момент, создаваемый высокорасположенными торпедными аппаратами. Катер вступил в строй 7 агуста 1930г. и несколько раз менял свое название, в результате он получил обозначение S-1 (Schnellboot). Следует отметить, что даже увеличение мощности двигателей не помогло добиться проектной скорости 36,5 узда. На скоростях близких к максимальной нос катера выходил из воды происходил замыв бортов и возникало сильное брызговое сопротивление. Эту проблему удалось решить применив так называемый «Эффект Люрссена». Суть его заключалась в том, что в потоки крайних гребных винтов ставили небольшие вспомогательные рули, которые поворачивали 15-18 градусов в сторону борта. Это помогло добиться увеличения скорости до двух узлов. Впоследствии, вспомогательные рули стали обязательной частью конструкции всех шнельботов. S-1 и стал прородителем всей серии немецких торпедных катеров класса S. С 1943 начали производиться катера наиболее удачной модификации Schnellboot типа S-100. От кораблей предыдущих типов он отличался бронированной рубкой куполообразной формы. Катера класса S-100 имели почти вдвое большую длину, чем катера противника аналогичного класса. Они были оборудованы каютами, камбузом, гальюном и всем необходимым для длительных переходов, что позволяло использовать их на большом удалении от баз. На катерах этого типа стояли двигатели общей мощностью 7500 л.с., что позволяло им развивать скорость 43,5 узла.

Водомет и поворотный механизм

При проектировании своего прикормочного кораблика я одновременно соотносил размер гребного винта, баллона для водомета и поворотного механизма. В результате перебора множества вариантов, остановил свой выбор на баллоне от дезодоранта. Внешний диаметр баллона составляет около 42 мм., что на 4 мм больше окружности винта, и на 3 мм. меньше диаметра поворотного механизма, который будет описан ниже.

После 153-х замеров я дрожащими руками вырезал отверстие в только что законченном корпусе своего кораблика.

Водомет вклеил на горячий клей. Сделал выемку для забора воды. Решил добавить кусочек алюминиевой перфорации для дополнительной жесткости баллона, так как метал в нем совсем тонкий и легко прогибался при небольших усилиях.

Далее я прикрепил к корпусу прикормочного кораблика крепление двигателя. Делал это таким образом: на дейдвуд прикрепил винт и жесткую муфту. К муфте – мотор, зафиксированный в креплении. После этого я выставил кораблик в таком положении, чтоб дейдвуд занял максимально вертикальное положение, при этом мотор оказывается в свободном подвешивании.

Осталось нанести немного клея, чтоб зафиксировать правильное положение крепления, а после его остывания, нанести уже количество клея необходимое для надежной фиксации.

Для «руля» в своем рыбацком корабле я использовал пластиковую баночку от корма для аквариумных рыб. Эта баночка, кстати, оказалась разделена перемычками на четыре части. Мне осталось все аккуратно вырезать и разметить для подсоединения к баллону водомета.

Рычаг для поворота сделан из стеклотекстолита толщиной 3 мм. Вырезал приблизительную форму, а потом вытесал напильником и наждачной бумагой выемку по форме баночки от корма.

Взял спицу от зонтика (толщина 2 мм.) и продел ее во влагозащитный пыльник для тяг (33х12мм).

Конец спицы загнул под углом 90 градусов и завел в сервопривод SG-90.

Изготовление рулей для модели

Теперь на радиоуправляемую модель катера Schnellboot S100 надо изготовить рули. На эту модель их надо сделать 3 штуки. По правилам рули и винты можно сделать несколько больших размеров. Если центральный руль вполне достаточной площади, то боковые рули маловаты. Перо имеют форму трапеции, поэтому, сначала из бумаги, сделаем выкройку. За основу можно взять рули из набора и немного увеличить площадь. После примерки выкроек перенесем их на материал, из которого будем делать детали. Здесь лучше применить нержавеющий и хорошо паяющийся металл. Для этих целей я использую листовую латунь толщиной 0,2-0,3 мм. Баллер делаем из велосипедной спицы, ее диаметр 2мм. Одни конец, на длину пера, плющится и обтачивается на электроточиле. Вот такие получились детали, приготовленные к пайке.

Устанавливаем баллер по месту оси вращения и хорошо припаиваем его мощным паяльником к одной из стенок пера. Затем сгибаем перо и запаиваем заднюю кромку, после, припаиваем торцы.

Вот такие получились необработанные детали.

Теперь их надо обработать и придать рулям нужную форму.

По такому же принципу делаем и центральный руль. Он несколько более сложной формы, но суть процесса подобна вышеописанной. Единственное отличие, здесь передняя кромка делается из медной трубки.

В конечном итоге получаются вот такие рули

Электрическая схема

Все остаются на местах и никто никуда не убегает. Боятся нечего. Ниже приведена полная электрическая схема рыболовного катера. Схема большая, потому что детальная, но сейчас все станет понятно.

Пунктирными линиями выделены отдельные блоки. Некоторые из них вы можете вообще не использовать, а некоторые заменить недорогим купленным аналогом. Лишь одна схема может показаться вам сложной, но вам даже не нужно ее понимать, а спаять при желании можно и то, чего не понимаешь.

Загрузить и скачать схему в большом формате можно

Итак, управление будет реализовано с клавиатуры таким образом:

А в таблице ниже вы можете видеть какой пин на Ардуино Уно отвечает за какую команду. Слов пин, ардуино, скэтч тоже боятся не стоит дальше все детально расcкажу. В столбце «Через:» указаны реле которые срабатывают при нажатии на определенную клавишу телефона.

Схема ДТМФ декодера проста в реализации всего 3 резистора и 1 конденсатор. Я смог все это поместить в штекер мини-джек.

Дальше немного сложнее. Речь пойдет о схеме Ардуино Уно, Ардуино Нано и реле для плат Ардуино. Но все же, схема нарисована детально. И большинство связей однотипны. К примеру, реле К1а-К6а – это реле для Ардуино с питанием 5 В. К каждому реле подходит три провода: +5В, GND (2 провода для питания) и сигнальный.

Когда телефон принимает ДТМФ сигнал (допустим, нажатие клавиши «3»), он передает его через входной пин А0 на плату Ардуино Уно. Там происходит мгновенное превращение этого сигнала в сигнал управления, который подаетя на нужный исходящий пин, например, пин 6, и реле К3а срабатывает, запуская тем самым схему для включения режима «Малый вперед».

Вторая плата – это Ардуино Нано. Она используетя исключительно для поворотов. Входящими сигналами для Ардуино Нано служат исходящие сигналы с 7,8,9 пинов Ардуино Уно. Но перед входом на плату Ардуино Нано, эти сигналы инвертируются посредством оптореле OR1-OR3 с логической единици на ноль с соответственно с ноля на единицу.

Эта сложность обусловлена тем, что скетч для поворотов работает без сбоев только в таком порядке. Вот и все; разбор этой схемы закончен.

В наличии были оптореле КР293КП9А. Блок из оптореле выглядит вот так:

Далее, рассмотрим регуляторы напряжения.

В этом блоке их три. Самый маленький и простой – это стабилизатор на 9 В. Он называется LM7809. Он дает на выходе ровно 9 вольт, которыми запитываются Ардуино Уно и Ардуино Нано.

Два регулятора используются для того, чтоб выставить комфортную скорость «Полный ход» и «Малый ход». Во-первых, для режима «Полный ход» можно обойтись без регулятора и просто запитать мотор в этом режиме напряжением от аккумулятора. Так даже повысится надежность системы. Во-вторых, такие регуляторы можно попросить спаять кого-то, кто не боится паяльника, если у вас такая фобия имеется. Или, в конце концов, объяснить в магазине радиотоваров, какой мощности мотор, каким напряжением вы хотите запитать, и вам подберут регулятор.

Схема управления мотором:

Схему управления мотором решил делать на реле. Связано это в первую очередь с тем, что они у меня были в наличии.

Лукавить не стану. Для неподготовленных людей эта схема сложная. Но я вам расскажу хотя бы для чего она создана. Возможно, многим станет понятно и то, как она работает.

Далее, одна и та же схема представлена в двух видах: первый – более удобен для монтажа, а второй – для анализа, как работают блокировки. Блокировки сделаны таким образом, что когда включен задний ход, невозможно включить ни малый, ни полный вперед.

Когда кораблик плывет вперед невозможно включить задний ход. Для смены направления необходимо остановить кораблик нажатием на клавишу «0». Главная идея этих блокировок: не создавать перегрузов электрической цепи. При этом, на ходу можно без проблем переключать малый и полный вперед.

На плату поместил реле и клемники. Так выглядит монтаж релейной схемы:

К клемникам припаял выходы с контактов и катушек реле. Обязательно на катушки реле устанавливать диоды. Синие варисторы (2 кружочка) ставить не обязательно.

Согласно схемы соединил контакты реле и питания между собой. Весь этот процесс абсолютно авторский. Я гнался за миниатюризацией. Сделал так. Вы можете сделать более громоздко, но более аккуратно.

Схема выгрузки

Принцип выгрузки прост: даем сигнал на ардуино, срабатывает электрозамок, освобождается бункер с прикормкой и оснасткой. Электрозамком является простой соленоид на 24В от подачи бумаги в лазерном принтере.

Чтоб сила втягивания была больше, я решил повысить напряжение с аккумулятора до 30 В.. Делается это с помощью простого китайского девайса МТ3608, купленного на AliExpress.

Тумблеры, вольтметры и габариты.

Тут схемы радуют глаз своей простотой и дотупностью. Габариты можно реализоввать просто прикрепив на ручку рыболовного кораблика велосипедный фонарь.

Закончу рассказ об электронике такой вот схемой аварийной остановки:

Создана она для того, чтоб при случайном пропадании мобильной связи на рыбалке рыболовный катер не уплыл за горизонт или в камыши.

Принцип работы прост: пока снята трубка и телефон (приемник) в режиме разговора, то на микрофоне гарнитуры есть напряжение. Его можно использовать для управления оптореле, через нормальноразомкнутые контакты которого будет подаваться напряжение на мотор катера. Если закончить вызов или если пропала сеть, напряжение на микрофоне пропадает, оптореле размыкается и мотор останавливается.

Как сделать радиоуправляемый катер своими руками

Для строительства кораблика потребуются.

Материалы. Кусок плотного пенопласта толщиной 25 мм, 6 пластиковых карточек, машинка на радиоуправлении, cтарый HDD, обрезки потолочной плитки (использованы куски от строительства планера), кусок мягкой проволоки, корпус от шариковой ручки или фломастера, банковскя резинка, два изолированных продка и пара зубочисток.

Инструмент. концелярский нож, пила по металлу, отвертки звездочки, паяльник, пистолет для термоклея, ножницы и плоскогубцы.

Мастер класс простой но требует навыков работы с инструментами и пониманием процессов строительства. Инструкция представлена в пошаговом виде.

Шаг 1. Рулевая машинка сделана из старого HDD, подробная технология именно для этого кораблика изложена здесь и показана на фото.

Кораблик пароходик Старый HDD HDD разобран Основание серво мотора Серво мотор Рама руля Материал руля Установка пера руля Рулевая машинка

Шаг 2. Специально для строительства у китайских братьев куплена простая (200 р. 2021 год) радиоуправляемая машинка. Ссылка на покупку здесь. Электроника двухкомандная. Основание машинки разделено на два отсека — моторный и батарейный с электроникой. Допустимо не разделять основание, но тогда придеться уделить больше внимания балансировке пароходика на воде. Провода питания двигателя отпаиваются и припаиваются новые. Проводники питания от двигателя припаиваются к серво мотору рулевой машинки. Схема соединений показана на фото.

Шаг 3. Изготавливаем гребные колеса. Полное руководство смотрим здесь. Колеса делаются из половинок разрезанных вдоль карточек. Смотри фото.

Материал для гребных колес Гребное колесо Гребные колеса

Шаг 4. Присоединение гребных колес к моторному отсеку. Колеса машинки при помощи плоскогубцев разрушаются. На осях должны остаться только утолщения крепления колес. Из старой авторучки или фломастера вырезаем два цилиндра длиной 40-50 мм и делаем в них три пропила для прохода лопастей. При помощи термоклея закрепляем цилиндры на гребных колесах. Смотри видео. Удлиненные оси закрепляем на валу также термоклеем — смотри видео! Удлинение необходимо из-за ширины корпуса кораблика для сохранения необходимой остойчивости на воде.

Моторный отсек Остатки колеса Заготовка вала Удлиняющий вал Установка вала Моторный отсек с движителями

Шаг 5. Строительство корпуса. Корпус вырезан ножом или пилой из пенопласта пеноплекс толщиной 25 мм. Смотри чертеж на фото. Посадочные гнезда под рулевую машинку, моторный и батарейный отсек сделаны по технологии показанной здесь. Моторный отсек полностью не заглубляется. Для лучшей устойчивости на курсе и защиты руля от водорослей установлен небольшой киль из пластиковой карточки. Киль закреплен термоклеем

Разметка гезда под рулевую машинку Гнездо под рулевую машинку Разметка отсеков Отсеки вырезаны Высота установки моторного отсека Установка киля Киль закреплен

Устанавливаем рулевую машинку, моторный и батарейный отскек. Соединяем все проводники и проверяем работу кораблика до спуска на воду. при помощи банковской резинки и зубочистуи воткнутой в корпус выставляем положение руля в центре. Подаем питание. Двигатель должен заработать и колеса начнуть вращаться, если вращение в неправильную сторону, то следует перепаять проводники питания,изменив полярность подключения. Проверяем работу пульта. Руль должен отклоняться влево и вправо по командам с пульта управления.

Шаг 6. Изготовление надстроек. При работе гребных колес может происходить захлестывание воды на палубу, что нежелательно. Для защиты от воды были сделаны из потолочной плитки эффектые кожухи колес и рубка. Труба сделана из алюминиевой банки. Как сгибать потолочную плитку подробно изложено здесь. надстойки закреплены термоклеем.

Программирование микроконтроллеров Ардуино

Ардуино – это, если кто не знает, микроконтроллеры для широкой публики. Весьма доступно и просто. Грубо говоря: подключил через USB к компьютеру, загрузил на него скетч (программа, в которой написано, что микроконтроллер будет делать) и все готово. Процесс установки драйверов и программы для загрузки описывать не буду. Все можно взять на сайте Arduino.

Если будут вопросы, то в сети полно детальных описаний этого процесса.

В моем прикормочном катере используется две платы Ардуино: одна УНО и одна НАНО.

Для Уно, помимо скетча, вам понадобятся библиотеки.

Загрузить и скачать библиотеку можно ЗДЕСЬ

Папку DTMF нужно скопировать в папку C:Program FilesArduinolibraries.

В самих скетчах, после вот такой «//» метки есть комментарии.

А вот сами скетчи:

Для УНО:

#include int sensorPin = A0; float n = 128.0; float sampling_rate = 8926.0; DTMF dtmf = DTMF(n, sampling_rate); float d_mags[8]; char thischar; int ledPins[] = { // Массив для 10 PINS / реле. 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 // 4-Pin, используется библиотекой! }; void setup() { for (int i = 0; i <= 9; i++) { pinMode(ledPins<i>, OUTPUT); // Весь массив ledPins делаем OUTPUT. digitalWrite(ledPins, HIGH); // Весь массив ledPins делаем HIGH. } } void loop() { dtmf.sample(sensorPin); dtmf.detect(d_mags, 506); thischar = dtmf.button(d_mags, 1800.); if (thischar) { digitalWrite(ledPins, LOW); delay(500); digitalWrite(ledPins, HIGH); } }

Для Нано: // добавляем библиотеку для работы с сервоприводами #include // для дальнейшей работы назовем 12 пин как servoPin #define servoPin 12 // 544 это эталонная длина импульса при котором сервопривод должен принять положение 0° #define servoMinImp 544 // 2400 это эталонная длина импульса при котором сервопривод должен принять положение 180° #define servoMaxImp 2400 Servo myServo; void setup() { myServo.attach(servoPin, servoMinImp, servoMaxImp); // устанавливаем пин как вывод управления сервоприводом, // а также для работы сервопривода непосредственно в диапазоне углов от 0 до 180° задаем мин и макс значения импульсов. pinMode(5, INPUT); pinMode(6, INPUT); pinMode(7, INPUT); myServo.write(1430); } void loop() { if(digitalRead(5) == HIGH) // Условие 1-й кнопки { myServo.write(1130); // Повернуть серво влево на 45 градусов } if(digitalRead(6) == HIGH) // Условие 2-й кнопки { myServo.write(1430); // Вернуть серво вцентр } if(digitalRead(7) == HIGH) // Условие 3-й кнопки { myServo.write(1730); // Повернуть серво вправо на 45 градусов } }

Крышка (палуба) катера и элементы управления на ней

Материалом для крышки послужил стеклотекстолит толщиной 2 мм.. Приложил корпус рыболовного кораблика к листу стеклотекстолита, обвел маркером контур, и вырезал электролобзиком нужную форму.

Вес крышки получился 590 грамм. Для такой жесткости вполне нормальный результат.

Далее, разместил на крышке главный тумблер питания (он идет в комплекте с резиновым колпачком),

Регуляторы мощности и тумблер для фонаря поместил в емкость от пудры, которую посадил на клей «жидкие гвозди» для полной гидроизоляции.

Для телефона-приемника и вольтметров я использовал внешнюю распределительную коробку. Также в ней помещаются контакты аккумулятора для заряда АКБ. На тыльной стороне вывел разъем для выгрузки.

Так выглядит прикормочный кораблик с установленной крышкой, но без выгрузки:

Ссылка на основную публикацию
Похожее